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Abstract

Research in action recognition using deep neural net-
works has seen great progress in recent times. Deep learn-
ing techniques are often more robust and accurate than
hand crafted techniques. However, its use in the field of
virtual reality interaction has been limited. In this paper we
analyze the viability of using a deep learning based action
recognition technique to detect walk-in-place action for vir-
tual reality locomotion. Our findings suggest that walking-
in-place action can be detected with a high level of accuracy
and thus is a promising avenue for farther research.

1. Introduction
Action recognition is the process of inferring what ac-

tion is taking place in a sequence of time series data i.e. a
video sequence. This sub-domain of machine learning has
seen great improvements in recent years, thanks to the ad-
vancements made in deep learning techniques. The usage
of action recognition is vast. It can be used in the medi-
cal field, for example in fall detection. Or it may be used
for surveillance purposes. Another important use of action
recognition is in the field of Human Computer Interaction
(HCI). In HCI, we are concerned with designing the most
effective and intuitive ways of communicating between hu-
mans and computers. One such intuitive technique is the
use of gestures for interaction. This relies on the successful
recognition of the actions performed by the users.

Virtual reality (VR) is a sub-domain of HCI that has seen
a resurgence in research in recent times. While a lot of
groundbreaking works have been done on many aspects of
VR, an open question that still remains is the question of
locomotion. Many of the VR experiences attempt to map
the limited available physical space to a much larger virtual
space. This means that a one to one mapping of physical
and virtual body translation is impossible. To solve this is-
sue many artificial locomotion techniques have been pro-
posed i.e. teleportation, head tilt, walking in place etc. Of
these, walking in place is deemed to induce a higher level
of presence [2], which is highly desirable in VR. Existing

approaches of detecting walking in place rely on threshold
based approaches where the acceleration changes of a wear-
able accelerometer [17] is observed to determine whether
the user is performing the action. Some approaches rely on
observing the vertical displacement of the the user’s head
[9] Kinect based approaches have also been explored [21]
where the joint rotations are observed. While these ap-
proach works, it has the potential of generating false posi-
tives. For example if the user physically walks to a different
point in the tracking space, the generated acceleration may
be wrongly interpreted as walking in place by the system.
Manually handling all cases might be error prone.

Instead, if an deep learning based action recognition ap-
proach is taken where we observer the full body movement
of the user, we may be able to generate user inputs in a
more reliable and robust manner. This paper is inspired by
such possibility and tries to present an alternative approach
to implementing walking-in-place.

2. Related Work
Activity recognition is a fast evolving field in the domain

of computer vision. Early research involved working with
color images for activity recognition. These relied on tem-
plate matching and state space based approaches[1]. Nowa-
days it’s more common to have approaches utilizing RGB-D
images. The depth channel of an RGB-D image can provide
important information about the geometry and position of
body parts. The availability of cheaper depth enabled cam-
eras have helped promote their usage. Li et al.[10] adopted
a bag of points approach to model the human postures. An
action graph was then constructed to represent the motion
dynamics which used a BLMD decoding scheme for activ-
ity recognition. HON4D by Oreifej and Liu [12] extracted
4D normal data from depth images. Their descriptor was
used with a SVM to classify actions.

After the success of AlexNet [7], it’s become common-
place to extract features using deep learning methods rather
than hand crafting them. Rahmani et al.[13] adopted such a
strategy where they trained a CNN with synthetic pose data.
The dataset was created by applying motion capture data to
3D human models. After training, the classifier was able
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Figure 1. Network overview

to recognize actions from real depth images with consid-
erably better performance than the state-of-the-art. Wang
et. al. [20] proposed a method using a three channel deep
convolutional neural network for human activity recogni-
tion. Depth maps are first transformed into 3 WHDMMs
(Weighted Heirarchical Depth Motion Maps). These WHD-
MMs are then fed into the three CNNs the output of which
are fuesd to get final classification.

In 2010, Microsoft introduced the kinect sensor to the
consumer market [11]. It was marketed as an input device
for the Microsoft Xbox 360 video game console. Although
initially meant as a game input device, the kinect has now
become popular in research field as a cheap and easily ac-
cessible depth camera. In addition to depth images, the
kinect is also capable of estimating human poses. Unlike
traditional optical motion capture systems, the kinect has a
significantly low barrier of entry. The kinect also outputs
body joint positions in real time which makes it ideal for
interactive application of activity recognition. In the past
decade, a substantial amount of data have been collected
by researchers for benchmark purposes from these skeleton
data output of the kinect sensor. Chief among these dataset
are NTU RGB+D 120 and NTU RGB+D 60 dataset[15].For
a comprehensive overview of the usage of skeletal data in
human activity recognition, the reader might refer to [14]
and [19].The following is a overview of the most relevant
literature from the field.

Quite a few researchers have explored the usage of skele-
tal data obtained from kinect for activity recognition. Yang
and Tian [23] introduced a new descriptor called ‘Eigen-
Joints’ based on the position differences of joints. A Naive
Bayes Nearest Neighbour classifier could recognize actions
from as few as 15-20 frames. Vemulapalli et al. [18] pre-
sented a different skeletal representation using the 3D ge-

ometric relationships between body parts rather then the
common of representation of considering the skeleton as a
set of joint positions. A different approach as adopted by
Koniusz et al. [6] where they introduced a sequence kernel
and a dynamics compatibility kernel to capture the higher-
order statistics of how various joints related to one another
in some action sequence.

Similar to depth image based activity recognition tech-
niques, deep learning can also be applied to skeletal data
to extract features. Qiuhong et al [5] generated frames
from skeletal data clips and fed it into a CNN. The out-
put of the CNN were feature vectors which a Multi-Task
Learning Network used to classify actions. Shahroudy et
al. [15] introduced a large dataset and proposed training
a part aware LSTM to recognize activity. Their proposed
P-LSTM network learns the temporal patterns of the body
joints and and combines them. Yan et al. [22] argued that
the reason body part aware methods work well is because
they create a hierarchical representation of the skeleton. In-
spired by how CNNs work on images, they proposed using
a hierarchical representation of the skeleton in the form of
a spatial temporal graph. Their proposed spatial-temporal
graph convolution network outperformed previous state of
the art techniques. SkeleMotion by Caetano et al. [3] com-
putes the magnitude and orientation of joints to prepare a
skeleton image. This is image used as the input of a CNN.
Their method achieved state-of-the-art on the NTU RGB+D
120 dataset. Shi et al. [16] on the other hand combined
both joint and bone information together by representing
the skeleton as a directed graph network (DGN). The DGN
blocks of the network could process spatial information of a
single frame. In order to model the temporal aspect, they in-
corporate a pseudo-3D CNN along the temporal dimension.
Their method achieved state-of-the-art performance on the
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Figure 2. View adaptive Network overview[24]. τt is the learnable parameters of the view adaptation subnetwork.

NTU RGB+D 60 dataset.
Another approach adopted by some researchers was to

convert the temporal data regarding the joint positions to a
3 channel color image. An CNN based image classification
network could then identify the different classes. Du et al.
[4] used this technique to get excellent result on the Berke-
ley MHAD dataset.

Li et al. [9] modified the technique to make it translation
and scale invariant. Zhang et al. [24] farther improved the
image classification based approach by adding a view adap-
tation sub-network. This sub-network determines the view-
point parameters of the input skeleton sequence and trans-
forms it so that all images are are considered from the same
viewpoint for learning.

In a comparative review paper, Wang et al. [20] com-
pared various depth and skeleton based algorithms and
found that skeleton-based algorithms are more robust than
depth images. Also, when given a small dataset,they found
hand crafted features to out perform deep learning features.
Finally, in a survey by Ren et al. [14], they reported that the
accuracy of skeleton based activity recognition is already
very high for the smaller NTU RGB+D 60 dataset.

3. Proposed Method

3.1. CNN based action recognition

This project was inspired by the approach presented in
[4]. The key idea from that paper was as following- we
can represent a sequence of 3d skeletal joint positions as a
3 channel 2d image. Each class of actions is expected to
create 2d images that have some distinguishing characteris-
tics when compared to images from other classes. A CNN
based image classification network can then learn to recog-
nize actions based on the images they create. Based on this,
a neural network was implemented with the architecture as
depicted in figure 1. Preprocessing the dataset so that each
action is represented by an RGB image was done offline

beforehand.
However, there are a few drawbacks to this. The primary

one being that this approach is not view invariant. So, while
the network performed similar to what was mentioned in the
paper, it struggled with the more challenging NTU-RGBD
60 dataset. This is because the same action can create a sig-
nificantly different image when recorded from a different
viewpoint. This makes it harder for the image classification
network to recognize different actions. Another issue is that
the coordinates of the joints are in the coordinate space of
the camera. Thus the same action performed at a different
point in space will look different when transformed to an
RGB image. A view-invariant approach was needed in or-
der to solve these issues.

3.2. View-invariant approach

This problem was addressed by Zhang et al. [24] where
the authors introduced a view adaptation sub-network be-
fore the classification is performed. This view adaptation
part of the network is trained in an end-to-end manner
alongside the classifier so that it can predict appropriate
transformation parameters for the camera. The idea is as
follows: Since a skeleton sequence provides the joint po-
sitions for every frame, we can represent the set of joint
positions in frame t as

Jt = v1t, ..., vJ t

where vjt is the joint position of the j’th joint at time t.
This set of positions is specified in the coordinate space of
the camera. However, we can easily translate the coordi-
nate space so that the skeleton is placed in the origin at
first frame of the skeleton sequence (at time t=0) through
a translation transformation. This gets rid of the problem
of translation variance of the skeleton sequence. To make
it view-invariant, we can think of holding a virtual cam-
era. By applying appropriate transformation to the skeleton
joint positions, we can have the same effect as changing the

4323



camera view point around the skeleton. If α, β and γ are the
three angles around the coordinate axis, this transformation
can be represented as the composition of three rotations,

R = Rα ∗Rβ ∗Rγ

where Rα, Rβ and Rγ are the rotation transformations. If
the virtual camera is positioned at Pt then a joint vi will be
transformed as,

v′i = R ∗ (vi − Pt)

The same transformation can also be applied to augment the
existing dataset by some random amount to generate more
training samples. Finally, a view adaptation sub-network
can be trained to learn the best values ofRα,Rβ ,Rγ and Pt.
Figure 2 depicts the approach. Thus, we have incorporated
the model presented in [24] in our implementation.

3.3. View-augmentation

The same transformation already described can be ap-
plied to the existing dataset to generate variations of the
samples from slightly different point of views. This can
help combat the overfitting problem. So view-augmentation
was also incorporated in to the implementation. The train-
ing samples are rotated randomly between [-0.3, 0.3] radian
to augmented the data.

3.4. Real-time action recognition

For the action recognition network to be used for loco-
motion purposes in VR, it has to run in real-time. The user’s
skeleton sequence must be compiled into an image that can
be classified by the trained network. An Azure Kinect de-
vkit sensor was used to track the joint positions in real-time.
The Azure kinect can provide skeletal joint positions in real-
time with minimal delay. Every 30 frames is considered as
a skeletal sequence which get converted to an RGB image
before getting fed into the deep neural network. The pre-
diction of the network can then be sent to a VR application
that will make use of it for avatar locomotion.

4. Result
4.1. Dataset

Figure 3 depicts the network performance on the modi-
fied NTU-RGBD 60 dataset. All except the last class (run
on the spot) have been picked from the NTU-RGBD 60
dataset. The last class (run on the spot) was taken from the
larger NTU-RGBD 120 dataset. Only action classes that
make some use of the lower body were selected. This was
done expecting that the training data would have enough in-
formation so that the network could learn to distinguish be-
tween the lower body movements for ’run on the spot’ and

other actions. The ’run on spot’ action was used as a sub-
stitute for ’walk in place’ action due to the lack of an ’walk
in place’ action in the dataset. Each class had 960 samples
which were split into training, validation and test sets of
size 612, 32 and 316 respectively. The ’run on spot’ action,
being picked from a different dataset didn’t match the rec-
ommended specification of the authors [15] when split by
either subject ids or view ids. So it was handled manually
to closely match that of the other classes.

4.2. Performance metrics

Figure 1 lists the cross subject and cross view model ac-
curacy along with the precision and recall values for ’run
on spot’ class. Because of the nature of the use case of the
model, the precision and recall values carry more signifi-
cance than the accuracy.

Mode Accuracy Precision Recall
CS 95.27 97.18 100
CV 97.13 99.38 99.38

Table 1. Cross subject and Cross view results. Precision and recall
are reported only for the ’run on spot’ class

5. Discussion
The network mostly performs well recognizing ’run on

spot’ action. It mostly faced issues when trying to distin-
guish between two similar actions ’put on shoe’ and ’take
off shoe’. However, that is not concerning for our partic-
ular use case since we care mainly about the accuracy of
recognition with the ’run on spot’ class.

While quite a few studies discuss the usability of walk-
ing in place as a locomotion technique, few actually provide
any measure of the accuracy achieved. [8] achieved an ac-
curacy of 99.32%. They distinguished between ’jogging-in-
place’ as intentional and ’marching-in-place’, and squatting
as unintentional actions.

In our implementation, with the cross subject model, we
see that all of the ’run on spot’ actions were detected suc-
cessfully. A few other actions however were also miscate-
gorized as ’run on spot’, Similarly, for the cross view model
the classifier was able to recognize most of the actions suc-
cessfully. Since it’s most likely that the network will be
used in a cross subject setup, the cross subject model was
incorporated into run on spot module. One advantage of
this implementation is that it automatically differentiates
real walking from walk-in-place.

The primary issue with the current implementation is the
latency. It needs about a second of data to accurately iden-
tify the action. This may or may not be acceptable depend-
ing on the use case. A proper user study can shed more light
on this.
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Figure 3. Confusion Matrix of accuracy on Cross Subject (top) and
Cross View (bottom) dataset

Another issue is the lack of appropriate training data.
For the specific use case in mind (locomotion in VR) a
dataset containing actions like ’walking in place’, ’running
in place’, ’walking’ etc would be more appropriate. Such a
dataset might also result in higher accuracy. Because of this,
the current implementation was trained on a set of classes
that seemed most appropriate intuitively.

6. Conclusion
In this paper We’ve presented a novel approach to recog-

nizing walking in place action for the purpose of use in VR
locomotion. The preliminary analysis shows that ’run on
spot’ can be successfully recognized with a high degree of
accuracy. After farther improvement to the real-time evalu-
ation speed it may be incorporated into VR applications for
the purpose of locomotion.

References
[1] J. K. Aggarwal and Q. Cai. Human motion analysis: A re-

view. Computer vision and image understanding, 73(3):428–
440, 1999.

[2] M. Al Zayer, P. MacNeilage, and E. Folmer. Virtual loco-
motion: a survey. IEEE transactions on visualization and
computer graphics, 26(6):2315–2334, 2018.

[3] C. Caetano, J. Sena, F. Brémond, J. A. Dos Santos, and W. R.
Schwartz. Skelemotion: A new representation of skeleton
joint sequences based on motion information for 3d action
recognition. In 2019 16th IEEE International Conference
on Advanced Video and Signal Based Surveillance (AVSS),
pages 1–8. IEEE, 2019.

[4] Y. Du, Y. Fu, and L. Wang. Skeleton based action recognition
with convolutional neural network. In 2015 3rd IAPR Asian
Conference on Pattern Recognition (ACPR), pages 579–583.
IEEE, 2015.

[5] Q. Ke, M. Bennamoun, S. An, F. Sohel, and F. Boussaid.
A new representation of skeleton sequences for 3d action
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3288–3297,
2017.

[6] P. Koniusz, A. Cherian, and F. Porikli. Tensor representa-
tions via kernel linearization for action recognition from 3d
skeletons. In European conference on computer vision, pages
37–53. Springer, 2016.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. Ad-
vances in neural information processing systems, 25:1097–
1105, 2012.

[8] J. Lee, S. C. Ahn, and J.-I. Hwang. A walking-in-place
method for virtual reality using position and orientation
tracking. Sensors, 18(9), 2018.

[9] B. Li, Y. Dai, X. Cheng, H. Chen, Y. Lin, and M. He. Skele-
ton based action recognition using translation-scale invariant
image mapping and multi-scale deep cnn. In 2017 IEEE In-
ternational Conference on Multimedia & Expo Workshops
(ICMEW), pages 601–604. IEEE, 2017.

[10] W. Li, Z. Zhang, and Z. Liu. Action recognition based
on a bag of 3d points. In 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition-
Workshops, pages 9–14. IEEE, 2010.

[11] J. Lowensohn. Timeline: A look back at Kinect’s history.
[12] O. Oreifej and Z. Liu. Hon4d: Histogram of oriented 4d

normals for activity recognition from depth sequences. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 716–723, 2013.

4325



[13] H. Rahmani and A. Mian. 3d action recognition from novel
viewpoints. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1506–1515,
2016.

[14] B. Ren, M. Liu, R. Ding, and H. Liu. A survey on 3d
skeleton-based action recognition using learning method.
arXiv preprint arXiv:2002.05907, 2020.

[15] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. Ntu rgb+ d:
A large scale dataset for 3d human activity analysis. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 1010–1019, 2016.

[16] L. Shi, Y. Zhang, J. Cheng, and H. Lu. Skeleton-based action
recognition with directed graph neural networks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7912–7921, 2019.

[17] S. Tregillus and E. Folmer. Vr-step: Walking-in-place us-
ing inertial sensing for hands free navigation in mobile vr
environments. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, pages 1250–1255,
2016.

[18] R. Vemulapalli, F. Arrate, and R. Chellappa. Human action
recognition by representing 3d skeletons as points in a lie
group. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 588–595, 2014.

[19] L. Wang, D. Q. Huynh, and P. Koniusz. A comparative re-
view of recent kinect-based action recognition algorithms.
IEEE Transactions on Image Processing, 29:15–28, 2019.

[20] P. Wang, W. Li, Z. Gao, J. Zhang, C. Tang, and P. O. Ogun-
bona. Action recognition from depth maps using deep con-
volutional neural networks. IEEE Transactions on Human-
Machine Systems, 46(4):498–509, 2015.

[21] P. T. Wilson, K. Nguyen, A. Harris, and B. Williams. Walk-
ing in place using the microsoft kinect to explore a large ve.
In Proceedings of the 13th ACM SIGGRAPH International
Conference on Virtual-Reality Continuum and its Applica-
tions in Industry, pages 27–33, 2014.

[22] S. Yan, Y. Xiong, and D. Lin. Spatial temporal graph con-
volutional networks for skeleton-based action recognition.
In Proceedings of the AAAI conference on artificial intelli-
gence, volume 32, 2018.

[23] X. Yang and Y. L. Tian. Eigenjoints-based action recognition
using naive-bayes-nearest-neighbor. In 2012 IEEE computer
society conference on computer vision and pattern recogni-
tion workshops, pages 14–19. IEEE, 2012.

[24] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and
N. Zheng. View adaptive neural networks for high per-
formance skeleton-based human action recognition. IEEE
transactions on pattern analysis and machine intelligence,
41(8):1963–1978, 2019.

4326


